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Outline 

•  Part 1: Angular Effect of Residual Cloud and 
Aerosol Contamination 
–  IR Window Channel Radiance Sensitivity 

•  Part 2: Satellite Experimental Analyses 
–  MetOp-A IASI Cloud-Cleared Radiances 
–  MetOp-A AVHRR/3 Cloud Mask 

•  Part 3: Aircraft Analyses (TBD) 
–  NAST-I spectra 
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Introduction and Background 

•  Accurate satellite observations (obs) and calculations (calc) of top-of-atmosphere 
(TOA) infrared (IR) spectral radiances are required for the accurate retrieval of 
environmental data records (EDRs) such as atmospheric vertical temperature and 
moisture profiles. 

•  Ideally, it is desired that systematic differences between observations and calculations 
(calc − obs) under well-characterized conditions be minimal over the sensor’s scanning 
range of zenith angles. 

•  A fundamental problem with “clear-sky” (i.e., cloud and aerosol free) analyses of 
calc − obs is the assumption of perfect clear-sky obs, when in reality we only 
have access to cloud-cleared or cloud-masked obs, these being the products of 
algorithms, both of which are subject to errors and not designed to mask aerosols. 

•  This presentation summarizes work (Nalli et al. 2012a,b, JGR-Atmospheres) 
investigating the impact of the “clear-sky” observations commonly used in such 
analyses, which include cloud-cleared radiances (i.e., from hyper/ultraspectral 
sounders), as well as cloud-masked data (i.e., from imagers). 
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PART 1: ANGULAR EFFECT OF 
CLOUD AND AEROSOL 
CONTAMINATION 

Angular Effect of Residual Clouds/Aerosols in Clear-Sky IR Obs 
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Angular Effect of Clouds and 
Aerosols 

•  Idealized approximations for assessing the impacts of single layer 
clouds and aerosols on window channel radiances are derived in this 
work for various scenarios, including 

–  Broken opaque clouds 
–  Aerosol layer 
–  Aerosol layer overlying or underlying broken opaque clouds 
–  Broken semitransparent clouds 

•  To achieve this, we rely on a statistical model for predicting the 
probability of a clear line of sight (PCLoS), which assumes idealized 
opaque clouds, Poisson-distributed within a plane-parallel, horizontally 
unbounded layer (e.g., Kauth and Penquite 1967; Taylor and Ellingson 
2008). 

–  We assume that the ensemble probability of a cloudy FOV mischaracterized as 
“clear” behaves as 1 − PCLoS with a very small absolute cloud fraction. 
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Modeled Impact of Broken Opaque Clouds: 
Probability of Clear Line of Sight (PCLoS) Model 
(e.g., Kauth and Penquite 1967; Taylor and Ellingson 2008)  

•  Clouds are idealized as blackbodies 
in a plane-parallel atmosphere 
Poisson-distributed over a blackbody 
sea surface 

•  Given absolute cloud fraction N, the 
expression for PCLoS is 

 

•  Cloud shapes for f(θ,α) used in this 
work are ellipsoid, semiellipsoid, 
isosceles trapezoid 

•  For the special case of opaque 
clouds, the variation of ensemble 
“superwindow” radiance with θ	
  is 
approximated by 
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•  Assuming a uniform, plane-
parallel aerosol layer (e.g., 
Saharan dust) over a 
blackbody sea surface, the 
variation of FOV 
superwindow radiance 
with θ is approximated by 

Modeled Impact of Aerosols 
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Modeled Impact of Opaque Clouds + 
Aerosols, and Semitransparent Clouds 

•  More sophisticated superwindow radiative 
transfer equations are likewise derived for  
– Aerosol layer over or under broken opaque 

clouds 
– Broken semitransparent clouds 

§  Analytical expressions are derived for mean slant-
paths through idealized shapes 
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IR Window Channel Radiance 
Sensitivity (1/2) 

•  Sensitivity equations for the angular impact on superwindow 
channel radiance for various scenarios are derived as follows 
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IR Window Channel Radiance 
Sensitivity (2/2) 

Aerosols and Broken Opaque Clouds Semitransparent Broken Clouds 

14-Nov-12 N. R. Nalli et al. - Sounder Sci Team Mtg 



PART 2: SATELLITE 
EXPERIMENTAL ANALYSES 

Angular Effect of Residual Clouds/Aerosols in Clear-Sky IR Obs 
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Experimental Analyses 

•  Analyses of calc − obs as a function of θ are performed using MetOp-
A NOAA-unique IASI Level 2 cloud-cleared radiance (CCR) granules 
produced by NESDIS/STAR 
–  Sample granules have been matched with ocean-based dedicated RAOBs 

obtained from the NOAA Aerosols and Ocean Science Expeditions 
(AEROSE) (Nalli et al. 2011, BAMS) 

–  To minimize uncertainties arising from gas absorption deviating from 
atmospheric state parameter inputs, spectral microwindows minimally 
impacted by absorbing species in the IR are selected. 

•  Corollary analyses of satellite cloud products are also conducted 
–  MetOp-A IASI effective cloud fraction 
–  MetOp-A AVHRR/3 cloud mask (not shown here) 
 

•  Analyses using radiance spectra (without cloud-clearing) obtained from 
NAST-I during the 2007 Joint Airborne IASI Validation Experiment 
(JAIVEX) over-flight of the Gulf of Mexico, is the subject of ongoing 
research. 
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Satellite Analysis Using Cloud-
Cleared Radiances 

•  NOAA Aerosols and Ocean Science 
Expeditions (AEROSE) 2007–2011 

•  Calculation (calc) 
–  Atmosphere – LBLRTM v11.7 

  T and H2O profiles obtained from Vaisala RS92 
RAOBs launched over open ocean ≃ 30 min 
prior to MetOp overpasses 

–  Surface 
  RAOB lowest level measurements 

*  Wind speed used for emissivity models 
*  Skin SST proxy given by the air temperature 

•  Observation (obs) 
–  NOAA Unique Infrared Atmospheric 

Sounding Interferometer (IASI) CCRs 
  Nearest IASI field-of-regard (FOR) within 200 km 

of RAOB 
  Ascending (day) and descending (night) 

overpasses 
–  Microwindow channels 

  956.5–958.5 cm-1, 962.5–964.5 cm-1, 1202.0–
1204.5 cm-1 
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AEROSE IASI-RAOB calc − obs 
Results 

•  A strong concave-up 
signal is observed 

•  This cannot be attributed 
to the forward model 

–  Selected channels are 
minimally impacted by gas 
absorbers 

–  The sfc emissivity model 
difference is an order of 
magnitude smaller than the 
observed variation 

•  Thus, the concave-up 
variation is an indicator 
of cloud contamination 
in the cloud-cleared 
radiances, a known issue 
(e.g., Maddy et al. 2011) 
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AEROSE IASI Effective Cloud 
Fraction Retrievals (1/2) 

AEROSE	
  IASI	
  Granule	
  Sample	
  
Mean	
  IASI	
  Retrieved	
  Effec8ve	
  Cloud	
  
Frac8on	
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AEROSE IASI Effective Cloud 
Fraction Retrievals (2/2) 

•  Shown are NOAA IASI effective 
cloud fraction retrievals for the 
upper and lower atmosphere 
(AEROSE domain, n = 525,843) as 
a function of angle (5° binned 
means)  

•  Overlaid are hypothetical 
calculations based upon our cloud 
and aerosol models for various 
assumed scenarios, assuming IASI 
effective cloud fractions near nadir 

•  The  IASI retrievals exhibit a small 
degree of concave-up angular 
dependence for the lower 
formation 

•  However, it appears that the upper 
formation (l = 1) retrievals may be 
underestimating effective cloud 
fraction at larger angles 

–  IASI retrieval s assume blackbody clouds 
–  This corroborates that cloud 

contamination is a probable culprit in the 
observed concave-up calc − obs 
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Summary and Conclusion 

•  In typical analyses of clear-sky TOA window 
channel calc − obs, the “clear-sky” 
observations (obs) themselves are the 
product of an algorithm that is subject to 
uncertainties. 

•  This work has presented idealized models and 
satellite data that indicate that residual clouds and 
aerosols remaining in “clear-sky” window 
radiances can lead to colder obs with greater 
angles, and therefore a concave-up calc − obs 
variation with zenith angle. 

14-Nov-12 N. R. Nalli et al. - Sounder Sci Team Mtg 



Acknowledgments 

•  This research was supported by 
–  The STAR Satellite Meteorology and Climatology Division (SMCD), (M. D. Goldberg, SMCD Division Chief) 
–  The NOAA Joint Polar Satellite System (JPSS) Office (NJO) 
–  The GOES-R Algorithm Working Group 
–  ROSES 2009 (Barnet and Maddy). 

•  AEROSE is supported by the NOAA Educational Partnership Program grant NA17AE1625, 
NOAA grant NA17AE1623 to establish the NOAA Center for Atmospheric Science (NCAS) at 
Howard University 

•  We are grateful to the following individuals for their contributions in support of this work: 

–  P. Keehn (STAR/IOSSPDT team): STAR support, including the NOAA Unique IASI Cloud-Cleared Radiance 
Product for the AEROSE campaigns 

–  Sasha Ignatov, X. Liang (STAR/SOCD): meetings and discussions pertaining to MICROS calc − obs results 

–  A. Flores, M. Oyola (Howard University); A. Smirnov (NASA/GSFC): AEROSE Microtops sun photometer 
support 

–  P. van Delst (NWS/NCEP): LBLRTM and CRTM consultation 

14-Nov-12 N. R. Nalli et al. - Sounder Sci Team Mtg 



EXTRA SLIDES 
Angular Effect of Residual Clouds/Aerosols in Clear-Sky IR Obs 
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Radiative Transfer Model (RTM) 

•  Assuming a plane-parallel, non-scattering (IR), clear-sky, azimuthally 
symmetric atmosphere, the RTE is given by: 

•  Where the surface-leaving radiance (SLR) is modeled as 

 
•  Atmospheric transmittance and radiance terms are calculated using the 

AER Line-By-Line Radiative Transfer Model (LBLRTM) (Clough et al. 
2005) Version 11.7. 

–  LBLRTM calculations performed in this work take into account absorbing species 
H2O, CO2, O3, N2O, CH4, CFC-11, CFC-12 and CCl4. 
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